Validation Methods

Pointblank provides a comprehensive suite of validation methods to verify different aspects of your data. Each method creates a validation step that becomes part of your validation plan.

These validation methods cover everything from checking column values against thresholds to validating the table structure and detecting duplicates. Combined into validation steps, they form the foundation of your data quality workflow.

Pointblank provides over 40 validation methods to handle diverse data quality requirements. These are grouped into five main categories:

  1. Column Value Validations
  2. Row-based Validations
  3. Table Structure Validations
  4. AI-Powered Validations
  5. Aggregate Validations

Within each of these categories, we’ll walk through several examples showing how each validation method creates steps in your validation plan.

And we’ll use the small_table dataset for all of our examples. Here’s a preview of it:

PolarsRows13Columns8
date_time
Datetime
date
Date
a
Int64
b
String
c
Int64
d
Float64
e
Boolean
f
String
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423.29 True high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 9999.99 True low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343.23 True high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 None 3892.4 False mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 283.94 True low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291.03 True mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843.34 True high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1035.64 False low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 837.93 False high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 837.93 False high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 833.98 True low
12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108.34 False low
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 None 2230.09 True high

Validation Methods to Validation Steps

In Pointblank, validation methods become validation steps when you add them to a validation plan. Each method creates a distinct step that performs a specific check on your data.

Here’s a simple example showing how three validation methods create three validation steps:

import pointblank as pb

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))

    # Step 1: Check that values in column `a` are greater than 2 ---
    .col_vals_gt(columns="a", value=2, brief="Values in 'a' must exceed 2.")

    # Step 2: Check that column 'date' exists in the table ---
    .col_exists(columns="date", brief="Column 'date' must exist.")

    # Step 3: Check that the table has exactly 13 rows ---
    .row_count_match(count=13, brief="Table should have exactly 13 rows.")
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C66 1
col_vals_gt
col_vals_gt()

Values in 'a' must exceed 2.

a 2 13 9
0.69
4
0.31
#4CA64C 2
col_exists
col_exists()

Column 'date' must exist.

date 1 1
1.00
0
0.00
#4CA64C 3
row_count_match
row_count_match()

Table should have exactly 13 rows.

13 1 1
1.00
0
0.00

Each validation method produces one step in the validation report above. When combined, these steps form a complete validation plan that systematically checks different aspects of your data quality.

Common Arguments

Most validation methods in Pointblank share a set of common arguments that provide consistency and flexibility across different validation types:

  • columns=: specifies which column(s) to validate (used in column-based validations)
  • pre=: allows data transformation before validation
  • segments=: enables validation across different data subsets
  • thresholds=: sets acceptable failure thresholds
  • actions=: defines actions to take when validations fail
  • brief=: provides a description of what the validation is checking
  • active=: determines if the validation step should be executed (default is True)
  • na_pass=: controls how missing values are handled (only for column value validation methods)

For column validation methods, the na_pass= parameter determines whether missing values (Null/None/NA) should pass validation (this parameter is covered in a later section).

These arguments follow a consistent pattern across validation methods, so you don’t need to memorize different parameter sets for each function. This systematic approach makes Pointblank more intuitive to work with as you build increasingly complex validation plans.

We’ll cover most of these common arguments in their own dedicated sections later in the User Guide, as some of them represent a deeper topic worthy of focused attention.

1. Column Value Validations

These methods check individual values within columns against specific criteria:

Now let’s look at some key examples from select categories of column value validations.

Comparison Checks

Let’s start with a simple example of how col_vals_gt() might be used to check if the values in a column are greater than a specified value.

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_vals_gt(columns="a", value=5)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C66 1
col_vals_gt
col_vals_gt()
a 5 13 3
0.23
10
0.77

If you’re checking data in a column that contains Null/None/NA values and you’d like to disregard those values (i.e., let them pass validation), you can use na_pass=True. The following example checks values in column c of small_table, which contains two None values:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_vals_le(columns="c", value=10, na_pass=True)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_vals_le
col_vals_le()
c 10 13 13
1.00
0
0.00

In the above validation table, we see that all test units passed. If we didn’t use na_pass=True there would be 2 failing test units, one for each None value in the c column.

It’s possible to check against column values against values in an adjacent column. To do this, supply the value= argument with the column name within the col() helper function. Here’s an example of that:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_vals_lt(columns="a", value=pb.col("c"))
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C66 1
col_vals_lt
col_vals_lt()
a c 13 6
0.46
7
0.54

This validation checks that values in column a are less than values in column c.

Checking of Missing Values

A very common thing to validate is that there are no Null/NA/missing values in a column. The col_vals_not_null() method checks for the presence of missing values:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_vals_not_null(columns="a")
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_vals_not_null
col_vals_not_null()
a 13 13
1.00
0
0.00

Column a has no missing values and the above validation proves this.

Checking Percentage of Missing Values

While col_vals_not_null() ensures there are no missing values at all, sometimes you need to validate that missing values match a specific percentage. The col_pct_null() method checks whether the percentage of missing values in a column matches an expected value:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_pct_null(columns="c", p=0.15, tol=0.05)  # Expect ~15% missing values (±5%)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
pct_null
col_pct_null()
c p = 0.15
tol = 0.05
1 1
1.00
0
0.00

This validation checks that approximately 15% of values in column c are missing, allowing a tolerance of ±5% (so the acceptable range is 10-20%). The tol= parameter can accept various formats including absolute counts or percentage ranges:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_pct_null(columns="c", p=0.15, tol=(0.05, 0.10))  # Asymmetric tolerance: -5%/+10%
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
pct_null
col_pct_null()
c p = 0.15
tol = (0.05, 0.1)
1 1
1.00
0
0.00

Checking Strings with Regexes

A regular expression (regex) validation via the col_vals_regex() validation method checks if values in a column match a specified pattern. Here’s an example with two validation steps, each checking text values in a column:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_vals_regex(columns="b", pattern=r"^\d-[a-z]{3}-\d{3}$")
    .col_vals_regex(columns="f", pattern=r"high|low|mid")
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_vals_regex
col_vals_regex()
b ^\d-[a-z]{3}-\d{3}$ 13 13
1.00
0
0.00
#4CA64C 2
col_vals_regex
col_vals_regex()
f high|low|mid 13 13
1.00
0
0.00

Checking Strings Against Specifications

The col_vals_within_spec() method validates column values against common data specifications like email addresses, URLs, postal codes, credit card numbers, ISBNs, VINs, and IBANs. This is particularly useful when you need to validate that text data conforms to standard formats:

import polars as pl

# Create a sample table with various data types
sample_data = pl.DataFrame({
    "isbn": ["978-0-306-40615-7", "0-306-40615-2", "invalid"],
    "email": ["test@example.com", "user@domain.co.uk", "not-an-email"],
    "zip": ["12345", "90210", "invalid"]
})

(
    pb.Validate(data=sample_data)
    .col_vals_within_spec(columns="isbn", spec="isbn")
    .col_vals_within_spec(columns="email", spec="email")
    .col_vals_within_spec(columns="zip", spec="postal_code[US]")
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C66 1
col_vals_within_spec
col_vals_within_spec()
isbn isbn 3 2
0.67
1
0.33
#4CA64C66 2
col_vals_within_spec
col_vals_within_spec()
email email 3 2
0.67
1
0.33
#4CA64C66 3
col_vals_within_spec
col_vals_within_spec()
zip postal_code[US] 3 2
0.67
1
0.33

Handling Missing Values with na_pass=

When validating columns containing Null/None/NA values, you can control how these missing values are treated with the na_pass= parameter:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_vals_le(columns="c", value=10, na_pass=True)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_vals_le
col_vals_le()
c 10 13 13
1.00
0
0.00

In the above example, column c contains two None values, but all test units pass because we set na_pass=True. Without this setting, those two values would fail the validation.

In summary, na_pass= works like this:

  • na_pass=True: missing values pass validation regardless of the condition being tested
  • na_pass=False (the default): missing values fail validation

2. Row-based Validations

Row-based validations focus on examining properties that span across entire rows rather than individual columns. These are essential for detecting issues that can’t be found by looking at columns in isolation:

These row-level validations are particularly valuable for ensuring data integrity and completeness at the record level, which is crucial for many analytical and operational data applications.

Checking Row Distinctness

Here’s an example where we check for duplicate rows with rows_distinct():

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .rows_distinct()
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C66 1
rows_distinct
rows_distinct()
ALL COLUMNS 13 9
0.69
2
0.15

We can also adapt the rows_distinct() check to use a single column or a subset of columns. To do that, we need to use the columns_subset= parameter. Here’s an example of that:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .rows_distinct(columns_subset="b")
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C66 1
rows_distinct
rows_distinct()
b 13 11
0.85
2
0.15

Checking Row Completeness

Another important validation is checking for complete rows: rows that have no missing values across all columns or a specified subset of columns. The rows_complete() validation method performs this check.

Here’s an example checking if all rows in the table are complete (have no missing values in any column):

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .rows_complete()
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C66 1
rows_complete
rows_complete()
ALL COLUMNS 13 11
0.85
2
0.15

As the report indicates, there are some incomplete rows in the table.

3. Table Structure Validations

Table structure validations ensure that the overall architecture of your data meets expectations. These structural checks form a foundation for more detailed data quality assessments:

These structural validations provide essential checks on the fundamental organization of your data tables, ensuring they have the expected dimensions and components needed for reliable data analysis.

Checking Column Presence

If you need to check for the presence of individual columns, the Validate.col_exists() validation method is useful. In this example, we check whether the date column is present in the table:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_exists(columns="date")
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_exists
col_exists()
date 1 1
1.00
0
0.00

That column is present, so the single test unit of this validation step is a passing one.

Checking the Table Schema

For deeper checks of table structure, a schema validation can be performed with the col_schema_match() validation method, where the goal is to check whether the structure of a table matches an expected schema. To define an expected table schema, we need to use the Schema class. Here is a simple example that (1) prepares a schema consisting of column names, (2) uses that schema object in a col_schema_match() validation step:

schema = pb.Schema(columns=["date_time", "date", "a", "b", "c", "d", "e", "f"])

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_schema_match(schema=schema)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_schema_match
col_schema_match()
SCHEMA 1 1
1.00
0
0.00

The col_schema_match() validation step will only have a single test unit (signifying pass or fail). We can see in the above validation report that the column schema validation passed.

More often, a schema will be defined using column names and column types. We can do that by using a list of tuples in the columns= parameter of Schema. Here’s an example of that approach in action:

schema = pb.Schema(
    columns=[
        ("date_time", "Datetime(time_unit='us', time_zone=None)"),
        ("date", "Date"),
        ("a", "Int64"),
        ("b", "String"),
        ("c", "Int64"),
        ("d", "Float64"),
        ("e", "Boolean"),
        ("f", "String"),
    ]
)

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_schema_match(schema=schema)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_schema_match
col_schema_match()
SCHEMA 1 1
1.00
0
0.00

The col_schema_match() validation method has several boolean parameters for making the checks less stringent:

  • complete=: requires exact column matching (all expected columns must exist, no extra columns allowed)
  • in_order=: enforces that columns appear in the same order as defined in the schema
  • case_sensitive_colnames=: column names must match with exact letter case
  • case_sensitive_dtypes=: data type strings must match with exact letter case

These parameters all default to True, providing strict schema validation. Setting any to False relaxes the validation requirements, making the checks more flexible when exact matching isn’t necessary or practical for your use case.

Comparing Tables with tbl_match()

The tbl_match() validation method provides a comprehensive way to verify that two tables are identical. It performs a progressive series of checks, from least to most stringent:

  1. Column count match
  2. Row count match
  3. Schema match (loose - case-insensitive, any order)
  4. Schema match (order - columns in correct order)
  5. Schema match (exact - case-sensitive, correct order)
  6. Data match (cell-by-cell comparison)

This progressive approach helps identify exactly where tables differ. Here’s an example comparing the small_table dataset with itself:

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .tbl_match(tbl_compare=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
tbl_match
tbl_match()
None EXTERNAL TABLE 1 1
1.00
0
0.00

This validation method is especially useful for:

  • Verifying that data transformations preserve expected properties
  • Comparing production data against a golden dataset
  • Ensuring data consistency across different environments
  • Validating that imported data matches source data

Checking Counts of Row and Columns

Row and column count validations check the number of rows and columns in a table.

Using row_count_match() checks whether the number of rows in a table matches a specified count.

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .row_count_match(count=13)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
row_count_match
row_count_match()
13 1 1
1.00
0
0.00

The col_count_match() validation method checks if the number of columns in a table matches a specified count.

(
    pb.Validate(data=pb.load_dataset(dataset="small_table", tbl_type="polars"))
    .col_count_match(count=8)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_count_match
col_count_match()
8 1 1
1.00
0
0.00

Expectations on column and row counts can be useful in certain situations and they align nicely with schema checks.

Validating Data Freshness

Late or missing data is one of the most common (and costly) data quality issues in production systems. When data pipelines fail silently or experience delays, downstream analytics and ML models can produce stale or misleading results. The data_freshness() validation method helps catch these issues early by verifying that your data contains recent records.

Data freshness validation works by checking a datetime column against a maximum allowed age. If the most recent timestamp in that column is older than the specified threshold, the validation fails. This simple check can prevent major downstream problems caused by stale data.

Here’s an example that validates data is no older than 2 days:

import polars as pl
from datetime import datetime, timedelta

# Simulate a data feed that should be updated daily
recent_data = pl.DataFrame({
    "event": ["login", "purchase", "logout", "signup"],
    "event_time": [
        datetime.now() - timedelta(hours=1),
        datetime.now() - timedelta(hours=6),
        datetime.now() - timedelta(hours=12),
        datetime.now() - timedelta(hours=18),
    ],
    "user_id": [101, 102, 103, 104]
})

(
    pb.Validate(data=recent_data)
    .data_freshness(column="event_time", max_age="2d")
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
data_freshness
data_freshness()
event_time 2d 1 1
1.00
0
0.00

The max_age= parameter accepts a flexible string format: "30m" for 30 minutes, "6h" for 6 hours, "2d" for 2 days, or "1w" for 1 week. You can also combine units: "1d 12h" for 1.5 days.

When validation succeeds, the report includes details about the data’s age in the footer. When it fails, you’ll see exactly how old the most recent data is and what threshold was exceeded. This context helps quickly diagnose whether you’re dealing with a minor delay or a major pipeline failure.

Data freshness validation is particularly valuable for:

  • monitoring ETL pipelines to catch failures before they cascade to reports and dashboards
  • validating data feeds to ensure third-party data sources are delivering as expected
  • including freshness checks in automated data quality tests as part of continuous integration
  • building alerting systems that trigger notifications when critical data becomes stale

You might wonder why not just use col_vals_gt() with a datetime threshold. While that approach works, data_freshness() offers several advantages: the method name clearly communicates your intent, the max_age= string format (e.g., "2d") is more readable than datetime arithmetic, it auto-generates meaningful validation briefs, the report footer shows helpful context about actual data age and thresholds, and timezone mismatches between your data and comparison time are handled gracefully with informative warnings.

Note

When comparing timezone-aware and timezone-naive datetimes, Pointblank will include a warning in the validation report. For consistent results, ensure your data and comparison times use compatible timezone settings.

4. AI-Powered Validations

AI-powered validations use Large Language Models (LLMs) to validate data based on natural language criteria. This opens up new possibilities for complex validation rules that are difficult to express with traditional programmatic methods.

Validating with Natural Language Prompts

The prompt() validation method allows you to describe validation criteria in plain language. The LLM interprets your prompt and evaluates each row, producing pass/fail results just like other Pointblank validation methods.

This is particularly useful for:

  • Semantic checks (e.g., “descriptions should mention a product name”)
  • Context-dependent validation (e.g., “prices should be reasonable for the product category”)
  • Subjective quality assessments (e.g., “comments should be professional and constructive”)
  • Complex rules that would require extensive regex patterns or custom functions

Here’s a simple example that validates whether text descriptions contain specific information:

import polars as pl

# Create sample data with product descriptions
products = pl.DataFrame({
    "product": ["Widget A", "Gadget B", "Tool C"],
    "description": [
        "High-quality widget made in USA",
        "Innovative gadget with warranty",
        "Professional tool"
    ],
    "price": [29.99, 49.99, 19.99]
})

# Validate that descriptions mention quality or features
(
    pb.Validate(data=products)
    .prompt(
        prompt="Each description should mention either quality, features, or warranty",
        columns_subset=["description"],
        model="anthropic:claude-sonnet-4-5"
    )
    .interrogate()
)

The columns_subset= parameter lets you specify which columns to include in the validation, improving performance and reducing API costs by only sending relevant data to the LLM.

Note: To use prompt(), you need to have the appropriate API credentials configured for your chosen LLM provider (Anthropic, OpenAI, Ollama, or AWS Bedrock).

5. Aggregate Validations

Aggregate validations operate on column-level statistics rather than individual row values. These methods compute an aggregate value (such as sum, average, or standard deviation) from a column and compare it against an expected value. Unlike row-level validations where each row is a test unit, aggregate validations treat the entire column as a single test unit that either passes or fails.

Pointblank provides three families of aggregate validation methods:

Each family supports the five comparison operators: equal to (_eq), greater than (_gt), less than (_lt), greater than or equal to (_ge), and less than or equal to (_le).

Validating Column Sums

Here’s an example validating that the sum of column a equals 55:

import polars as pl

agg_data = pl.DataFrame({
    "a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    "b": [10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
})

(
    pb.Validate(data=agg_data)
    .col_sum_eq(columns="a", value=55)
    .col_sum_gt(columns="b", value=500)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_sum_eq
col_sum_eq()
a 55 1 1
1.00
0
0.00
#4CA64C 2
col_sum_gt
col_sum_gt()
b 500 1 1
1.00
0
0.00

Validating Column Averages

Average validations are useful for ensuring that typical values remain within expected bounds:

(
    pb.Validate(data=agg_data)
    .col_avg_eq(columns="a", value=5.5)
    .col_avg_ge(columns="b", value=50)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_avg_eq
col_avg_eq()
a 5.5 1 1
1.00
0
0.00
#4CA64C 2
col_avg_ge
col_avg_ge()
b 50 1 1
1.00
0
0.00

Validating Standard Deviations

Standard deviation validations help ensure data variability is within expected ranges:

(
    pb.Validate(data=agg_data)
    .col_sd_gt(columns="a", value=2)
    .col_sd_lt(columns="b", value=35)
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_sd_gt
col_sd_gt()
a 2 1 1
1.00
0
0.00
#4CA64C 2
col_sd_lt
col_sd_lt()
b 35 1 1
1.00
0
0.00

Using Tolerance for Fuzzy Comparisons

Floating-point arithmetic can introduce small precision errors, making exact equality comparisons unreliable. The tol= parameter allows for fuzzy comparisons by specifying an acceptable tolerance:

(
    pb.Validate(data=agg_data)
    .col_avg_eq(columns="a", value=5.5, tol=0.01)  # Pass if average is within ±0.01 of 5.5
    .col_sum_eq(columns="b", value=550, tol=1)    # Pass if sum is within ±1 of 550
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_avg_eq
col_avg_eq()
a 5.5
tol=0.01
1 1
1.00
0
0.00
#4CA64C 2
col_sum_eq
col_sum_eq()
b 550
tol=1
1 1
1.00
0
0.00

For equality comparisons, the tolerance creates a range [value - tol, value + tol] within which the aggregate is considered valid.

Comparing Against Reference Data

Aggregate validations shine when comparing current data against a baseline or reference dataset. This is invaluable for detecting drift in data properties over time:

# Current data
current_data = pl.DataFrame({"revenue": [100, 200, 150, 175, 125]})

# Historical baseline
baseline_data = pl.DataFrame({"revenue": [95, 205, 145, 180, 130]})

(
    pb.Validate(data=current_data, reference=baseline_data)
    .col_sum_eq(columns="revenue", tol=50)   # Compare sums with tolerance
    .col_avg_eq(columns="revenue", tol=5)    # Compare averages with tolerance
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
col_sum_eq
col_sum_eq()
revenue ref('revenue')
tol=50
1 1
1.00
0
0.00
#4CA64C 2
col_avg_eq
col_avg_eq()
revenue ref('revenue')
tol=5
1 1
1.00
0
0.00

When value=None (the default) and reference data is set, aggregate methods automatically compare against the same column in the reference data.

6. Custom Validations with specially()

While Pointblank provides over 40 built-in validation methods, there are times when you need to implement custom validation logic that goes beyond these standard checks. The specially() method gives you complete flexibility to create bespoke validations for domain-specific business rules, complex multi-column checks, or cross-dataset referential integrity constraints.

Basic Custom Validations

The specially() method accepts a callable function that performs your custom validation logic. The function should return boolean values indicating whether each test unit passes:

import polars as pl

simple_tbl = pl.DataFrame({
    "a": [5, 7, 1, 3, 9, 4],
    "b": [6, 3, 0, 5, 8, 2]
})

# Custom validation: sum of two columns must be positive
def validate_sum_positive(data):
    return data.select(pl.col("a") + pl.col("b") > 0)

(
    pb.Validate(data=simple_tbl)
    .specially(
        expr=validate_sum_positive,
        brief="Sum of columns 'a' and 'b' must be positive"
    )
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
specially
specially()

Sum of columns 'a' and 'b' must be positive

EXPR 6 6
1.00
0
0.00

This validation passes because all rows have a positive sum for columns a and b. The specially() method provides the flexibility to implement any validation logic you can express in Python, making it a powerful tool for custom data quality checks.

Cross-Dataset Referential Integrity

One powerful use case for specially() is validating relationships between multiple datasets. This is particularly valuable for checking foreign key constraints, conditional existence rules, and cardinality relationships that span multiple tables.

Foreign Key Validation

Verify that all keys in one dataset exist in another:

# Create related datasets: Orders and OrderDetails
orders = pl.DataFrame({
    "order_id": [1, 2, 3, 4, 5],
    "customer_id": ["A", "B", "A", "C", "B"],
    "status": ["completed", "pending", "completed", "cancelled", "completed"]
})

order_details = pl.DataFrame({
    "detail_id": [101, 102, 103, 104, 105, 106, 107, 108, 109],
    "order_id": [1, 1, 1, 2, 3, 3, 4, 5, 5],
    "product_id": ["P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8", "P9"],
    "quantity": [2, 1, 3, 1, 2, 1, 1, 2, 1]
})

# Validate foreign key constraint
def check_foreign_key(df):
    """Check if all order_ids in order_details exist in orders table"""
    valid_order_ids = orders.select("order_id")
    # Semi join returns only rows with matching keys
    return df.join(valid_order_ids, on="order_id", how="semi").height == df.height

(
    pb.Validate(data=order_details, tbl_name="order_details")
    .specially(
        expr=check_foreign_key,
        brief="All order_ids must exist in orders table"
    )
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
specially
specially()

All order_ids must exist in orders table

EXPR 1 1
1.00
0
0.00

This validation ensures referential integrity by confirming that every order_id in the order_details table has a corresponding record in the orders table. The use of a semi-join makes this check efficient, as it only verifies the existence of matching keys without returning full joined data.

Conditional Existence Checks

Implement “if X then Y must exist” logic across datasets:

def check_completed_orders_have_details(df):
    """Completed orders must have at least one detail record"""
    completed_orders = df.filter(pl.col("status") == "completed")
    order_ids_with_details = order_details.select("order_id").unique()

    # Check each completed order has matching details
    return completed_orders.join(
        order_ids_with_details,
        on="order_id",
        how="left"
    ).with_columns(
        pl.col("order_id").is_not_null().alias("has_details")
    ).select("has_details")

(
    pb.Validate(data=orders, tbl_name="orders")
    .specially(
        expr=check_completed_orders_have_details,
        brief="Completed orders must have detail records"
    )
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
specially
specially()

Completed orders must have detail records

EXPR 3 3
1.00
0
0.00

This validation implements conditional business logic: only orders with a completed status are required to have detail records. This pattern is common in real-world scenarios where certain records trigger mandatory relationships while others don’t. The validation returns a boolean for each completed order, allowing you to see exactly which records pass or fail.

Cardinality Constraints

Validate that relationships between datasets follow specific cardinality rules:

def check_quantity_ratio(df):
    """Each order should have exactly 3x quantity units in details"""
    order_counts = orders.group_by("order_id").agg(pl.lit(1).alias("order_count"))

    detail_quantities = order_details.group_by("order_id").agg(
        pl.col("quantity").sum().alias("total_quantity")
    )

    joined = order_counts.join(detail_quantities, on="order_id", how="left")

    return joined.with_columns(
        (pl.col("total_quantity") == pl.col("order_count") * 3).alias("valid_ratio")
    ).select("valid_ratio")


(
    pb.Validate(data=orders, tbl_name="orders")
    .specially(
        expr=check_quantity_ratio,
        brief="Each order should have 3x quantity units in details",
        thresholds=(0.4, 0.7),  # Allow some flexibility
    )
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#AAAAAA 1
specially
specially()

Each order should have 3x quantity units in details

EXPR 5 2
0.40
3
0.60

Cardinality constraints like this validate that the relationship between datasets follows expected patterns. In this example, we expect each order to have a specific quantity ratio in the detail records. Note the use of thresholds= to allow some flexibility (not every order needs to meet this requirement perfectly, but too many violations would indicate a data quality issue).

Composite Keys with Business Logic

Validate complex relationships involving multiple columns and conditional logic:

# More complex scenario with composite keys
employees = pl.DataFrame({
    "dept_id": ["D1", "D1", "D2", "D2", "D3"],
    "emp_id": ["E001", "E002", "E003", "E004", "E005"],
    "emp_name": ["Alice", "Bob", "Charlie", "Diana", "Eve"],
    "is_manager": [True, False, True, False, False]
})

projects = pl.DataFrame({
    "project_id": ["P1", "P2", "P3", "P4"],
    "dept_id": ["D1", "D2", "D1", "D3"],
    "manager_emp_id": ["E001", "E003", "E001", "E005"]
})

def check_project_manager_validity(df):
    """Project managers must be valid managers in their department"""
    validation_result = df.join(
        employees,
        left_on=["dept_id", "manager_emp_id"],
        right_on=["dept_id", "emp_id"],
        how="left"
    ).with_columns(
        # Manager must exist in dept AND have manager status
        ((pl.col("emp_name").is_not_null()) & (pl.col("is_manager") == True)).alias("valid_manager")
    ).select("valid_manager")

    return validation_result

(
    pb.Validate(data=projects, tbl_name="projects")
    .specially(
        expr=check_project_manager_validity,
        brief="Project managers must be valid managers in their department"
    )
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C66 1
specially
specially()

Project managers must be valid managers in their department

EXPR 4 3
0.75
1
0.25

This example demonstrates validation using composite keys (both dept_id and emp_id) combined with conditional business logic (checking the is_manager flag). Such validations are common in enterprise systems where relationships must satisfy multiple constraints simultaneously. The validation reveals that one project (P4) fails because employee E005 is not a manager, even though they exist in the same department.

Reusable Validation Factories

For validations you’ll use repeatedly, create factory functions that generate customized validators:

def make_foreign_key_validator(reference_table, key_columns):
    """Factory function to create reusable foreign key validators"""
    def validate_fk(df):
        if isinstance(key_columns, str):
            keys = [key_columns]
        else:
            keys = key_columns

        ref_keys = reference_table.select(keys).unique()
        matched = df.join(ref_keys, on=keys, how="semi")
        return matched.height == df.height

    return validate_fk

# Use the factory across multiple validations
(
    pb.Validate(data=order_details, tbl_name="order_details")
    .specially(
        expr=make_foreign_key_validator(orders, "order_id"),
        brief="FK constraint: order_id → orders"
    )
    .interrogate()
)
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W E C EXT
#4CA64C 1
specially
specially()

FK constraint: order_id → orders

EXPR 1 1
1.00
0
0.00

Factory functions like make_foreign_key_validator() make your validation code more maintainable and reusable. Once defined, you can use the same factory to validate different foreign key relationships across your entire data pipeline, ensuring consistency in how these constraints are checked. This pattern is particularly valuable in production environments where you validate multiple related tables.

When to Use specially()

The specially() method is ideal for:

  • cross-dataset validations: foreign keys, referential integrity, conditional existence
  • complex business rules: multi-column checks, conditional logic, domain-specific constraints
  • custom statistical tests: validations requiring calculations not covered by built-in methods
  • SQL-style checks: converting complex SQL queries into validation steps
  • prototype validations: testing new validation patterns before implementing them as dedicated methods

By combining specially() with Pointblank’s built-in validation methods, you can create comprehensive data quality checks that address both standard and highly specific validation requirements.

Conclusion

In this article, we’ve explored the various types of validation methods that Pointblank offers for ensuring data quality. These methods provide a framework for validating column values, checking row properties, verifying table structures, using AI for complex semantic validations, and validating aggregate statistics across columns. By combining these validation methods into comprehensive plans, you can systematically test your data against business rules and quality expectations. And this all helps to ensure your data remains reliable and trustworthy.